Interleukin-6 Modulation of Intestinal Epithelial Tight Junction Permeability Is Mediated by JNK Pathway Activation of Claudin-2 Gene

نویسندگان

  • Rana Al-Sadi
  • Dongmei Ye
  • Michel Boivin
  • Shuhong Guo
  • Mariam Hashimi
  • Lisa Ereifej
  • Thomas Y. Ma
چکیده

Defective intestinal epithelial tight junction (TJ) barrier has been shown to be a pathogenic factor in the development of intestinal inflammation. Interleukin-6 (IL-6) is a pleiotropic, pro-inflammatory cytokine which plays an important role in promoting inflammatory response in the gut and in the systemic circulation. Despite its key role in mediating variety inflammatory response, the effect of IL-6 on intestinal epithelial barrier remains unclear. The purpose of this study was to investigate the effect of IL-6 on intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved using in-vitro (filter-grown Caco-2 monolayers) and in-vivo model (mouse intestinal perfusion) systems. Our results indicated that IL-6 causes a site-selective increase in Caco-2 intestinal epithelia TJ permeability, causing an increase in flux of small-sized molecules having molecular radius <4 Å. The size-selective increase in Caco-2 TJ permeability was regulated by protein-specific increase in claudin-2 expression. The IL-6 increase in TJ permeability required activation of JNK signaling cascade. The JNK pathway activation of AP-1 resulted in AP-1 binding to its binding sequence on the claudin-2 promoter region, leading to promoter activation and subsequent increase in claudin-2 gene transcription and protein synthesis and TJ permeability. Our in-vivo mouse perfusion showed that IL-6 modulation of mouse intestinal permeability was also mediated by AP-1 dependent increase in claudin-2 expression. In conclusion, our studies show for the first time that the IL-6 modulation of intestinal TJ permeability was regulated by JNK activation of AP-1 and AP-1 activation of claudin-2 gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and molecular mechanism of interleukin-1β modulation of Caco-2 intestinal epithelial tight junction barrier

Interleukin-1β (IL-1β) is a prototypical multifunctional cytokine that plays an important role in intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. Previous studies have shown that IL-1β causes an increase in intestinal epithelial tight junction (TJ) permeability both in in vivo animal and in vitro cell culture model systems. The IL-1β-induced increase in ...

متن کامل

Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity.

Intestinal barrier function is reduced in inflammatory bowel disease (IBD). Tumor necrosis factor (TNF) and interleukin (IL)-13, which are up-regulated in IBD, induce barrier defects that are associated with myosin light chain kinase (MLCK) activation and increased claudin-2 expression, respectively, in cultured intestinal epithelial monolayers. Here we report that these independent signaling p...

متن کامل

Salmonella Infection Upregulates the Leaky Protein Claudin-2 in Intestinal Epithelial Cells

BACKGROUND Tight junctions seal the space between adjacent epithelial cells. Mounting evidence suggests that tight junction proteins play a key role in the pathogenesis of human disease. Claudin is a member of the tight junction protein family, which has 24 members in humans. To regulate cellular function, claudins interact structurally and functionally with membrane and scaffolding proteins vi...

متن کامل

Outer Membrane Vesicles and Soluble Factors Released by Probiotic Escherichia coli Nissle 1917 and Commensal ECOR63 Enhance Barrier Function by Regulating Expression of Tight Junction Proteins in Intestinal Epithelial Cells

The gastrointestinal epithelial layer forms a physical and biochemical barrier that maintains the segregation between host and intestinal microbiota. The integrity of this barrier is critical in maintaining homeostasis in the body and its dysfunction is linked to a variety of illnesses, especially inflammatory bowel disease. Gut microbes, and particularly probiotic bacteria, modulate the barrie...

متن کامل

Aspirin induces gastric epithelial barrier dysfunction by activating p38 MAPK via claudin-7.

Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014